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* Hypersonic vehicles experience

aerodynamic heat loads:

— Cause very high temperatures on their
surface

- Use Thermal Protection System (TPS)

- Prolonged exposure to high temperature
and chemical reactions can cause TPS to
fail

— Ablative TPS

° Depending on the heat IOad'< (eg. Stardust)

— Non-ablative

TPS
(eg. Space shuttle)

» Surface heating affected by:
- Catalycity of the TPS material
- Chemical reaction between the surface

material and boundary layer gases —
surface recession

Accurate modeling of these gas-surface interactions is
necessary for the prediction of aerothermal heating of
the vehicle TPS

OBJECTIVES

* Investigate surface chemistry models to
describe dominant gas-surface
interaction processes (e.g. catalysis,
nitridation) implemented in a CFD code.

— current study Is an extension to previous
studies (AIAA-2012-534, RTO-AVT-199-2012, AIAA-2013-0187)

- gas-surface interaction model used (surface
catalysis and surface participating reactions
eg. nitridation, oxidation)

— Gas considered: Pure Nitrogen

- physical accuracy of the computational results
assessed using experimental data generated

In high-enthalpy facility at the University of
Vermont (UVM)

- sensitivity analysis of the free stream chemical
composition performed
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TECHNICAL APPROACH

 Computational Tools: LeMANS:
CFD code developed at the University of
Michigan (scalabrin and Boyd: AIAA-2006-3773)

- solves laminar Navier-Stokes equations

— can account for thermo-chemical
nonequilibrium effects

- finite volume algorithm with point/line
implicit time integration

—-2D/3D/Axisymmetric simulations on
structured/unstructured grids

—parallelized using domain decomposition

5"“NG Numerical Modeling of Atmospheric Re-entry

NGPDL, University of Michigan

+ Species boundary conditions

— finite rate surface chemistry (FRSC)
model (Maclean & Marshall 2011, Alkandry et. al
2012): surface catalysis and surface
participating reactions (eg. nitridation,
oxidation)

- Gas-surface interaction processes
studied:

 recombination of N atoms to molecules at
the surface due to catalysis

 carbon nitridation: N atoms react with the
surface carbon to form gaseous CN

- FRSC model used to simulate a constant
reaction efficiency vy
1) N +(s) = N(s): Adsorption (E_, =0 J/mol)
N+ N(s)—= N, +(s): Eley-Rideal recombination (E ., =0 J/mol)
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2) N +(s) = N(s): Adsorption (E_, =0 J/mol)
N+ N(s)—= N, +(s): Eley-Rideal recombination (E ., =0 J/mol)
C,+N +(s) = CN +(s): Eley-Rideal recombination (E,, =0 J/mol)
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ASSESSMENT OF

COMPUTATIONS

« Assessment of simulations p |

. . Test Y
performed using experimental
tests at UVM

- 30 kW Inductively Coupled
Plasma (ICP) Torch Facility

« Samples exposed to high
enthalpy subsonic gas flows

* Flow quantities measured using
two-photon Laser Induced
Fluorescence (LIF) technique:

- Relative N-atom number
density

- Translational temperature

ICP
torch

Graphite sample in nitrogen flow
(section in box is the portion
simulated)

Source: Prof. D.G. Fletcher (UVM)

NUMERICAL SETUP

* Free stream values and wall temperature
based on experimental setup

» Surface temperature and
sample ablation also quantified

Mass flow rate [kg/s] T.[K] P.[kPa] T, [K]
0.82 x 103 7000 21.3 1598
* Inlet chemical composition calculated using
(i) Chemical Equilibrium with // 4
Applications (CEA) £3
(ii) Power = mAh <m0 Hug
Ah = Z Yl j Cpl. dTl + Z YZAh}l Te(sTta:tzcgl;sm}gu
208 A subsonicinfow [ —

Inlet Power =13.8kW

Axis of symmetry

Boundary conditions

- Flow physics model:
Thermochemical nonequilibrium
- Radiative equilibrium
- Grid generated: Pointwise
- 22,000 quadrilateral cells

MOTIVATION TECHNICAL APPROACH RESULTS

Comparison with Experimental Data

Axial profiles next to surface
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inlet T.. [K] stag W/em?] Tstag [KI mass loss rate [kg/s]
composition
CEA 7000 270.415 2757.542 2.213
13.8 kW 7000 127.783 2284.063 0.861

Sensitivity to Inlet Temperature (Power = 13.8 kW)

Axial profiles next to surface
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Power [kW] T.. [K] Qstag W/em?] Tstag [KI mass loss rate [kg/s]
13.8 6000 122.258 2258.888 0.831
13.8 7000 127.783 2284.063 0.861
13.8 8000 133.198 2307.974 0.899

Sensitivity to Inlet Power

Axial profiles next to surface
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Translational temperature Normalized N-atom density

Power Xy TLIK]  QeagW/em?] Ty, [K] mass loss rate
[KW] [kg/s]
5.7 0 7000 51.856 1820.910 0.113
7.3 0.1 7000 65.953 1934.392 0.265
9.1 0.2 7000 81.662 2041.070 0.422
13.8 0.423 7000 127.783 2284.063 0.861
Experiment ~7000 40 - 80 ~ 1600 0.2-0.6
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CONCLUSIONS

* Temperature in the boundary layer not
affected by different surface reactions
* Nitrogen atom density decreased when
surface chemistry was included
» Carbon mass loss, stagnation temperature
and heat flux
— decreased significantly for chemical
composition calculated using inlet power
as opposed to the equilibrium
composition calculated using CEA
- not significantly sensitive to inlet
temperature
— significantly sensitive to inlet power




